We need to first load the package tidyverse
and take a look at the data:
glimpse(data)
## Observations: 1,000
## Variables: 15
## $ TimeStamp <chr> "2020/06/12 8:40:04 pm GMT-5", "2020/06/12 3:29:33 pm…
## $ workshop <chr> "Yes", "Yes", "Yes", "Maybe", "Yes", "Yes", "Yes", "Y…
## $ days <chr> "Monday;Tuesday;Wednesday;Thursday;Friday;Saturday;Su…
## $ model <chr> "2 hours over 3 days;2 hours over 4 days", "2 hours o…
## $ times <chr> "Afternoon", "Morning;Afternoon", "Morning;Afternoon"…
## $ county <chr> "Orange County, CA", "Franklin county, OH", "Franklin…
## $ age <dbl> 24, 23, 23, 24, 23, 27, 31, 26, 35, 24, 24, NA, 27, 2…
## $ bad <chr> "Psychology", "Psychology;Sociology", "Psychology;Soc…
## $ good <chr> "Anthropology;Post Structuralism;Critical Racism;Femi…
## $ exp <chr> "What is R?", "Can do cleaning, basic predictive mode…
## $ social <chr> "SGGSAC", "SGGSAC", "SGGSAC", "SGGSAC", "SGGSAC", "VA…
## $ characters <chr> "6", "9", "9", "8", "7", "14", "9", "17", "9", "20", …
## $ learn <chr> "Basic data cleaning;Dealing with texts;Making beauti…
## $ homework <chr> "No", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes", "Yes"…
## $ cohort <chr> "Anthropology", "Economics", "Economics", "Sociology"…